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We present the model of random, pseudoturbulent phase motions in concentrated, disperse, 
gas-suspended particles systems, based on the development of ideas expounded in our pre- 
vious papers [l- 31 and [4]. This model enables us, in principle, to construct a structural 
theory of gaseous suspensions when the flow is pseudoturbulent [S], to compute the cor- 
responding transfer coefficients and to formulate the dynamic equations of motion. 

Papers [l - 33 considered pulsating motions of a two-phase disperse system using the 
statistical approach and developed a general method of the quantitative treatment of 
the pulsations and their influence on the average motion of the system. At the same 

time, ways were indicated towards constructing a non-Newtonian mechanics of disperse 

systems. 
The model [3] however, retains a number of unsolved difficulties. First of them con- 

cerns the fact that the proposed model is based on the use of certain random forces act- 
ing on the phases in random motion, and of the statistical white noise, the latter allow- 
ing the description of not only of the orderly degeneration of the fluctuations of the 
averaged hydrodynamic field of a disperse system, but also of their random accumula- 
tion. The forces and the white noise enter 133 separately, although the general physical 
considerations imply that a mere appearance of the white noise should be the result of 
the action of the random forces. 
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Secondly, positive results are obtained under the additional assumptions of the type of 
the hypothesis of the statistical dependence of the positions of the separate particles in 
space. This hypothesis is valid, strictly speaking, only, when the volume of the disperse 
system over which the pulsations are analized, is sufficiently large. 

Thirdly, linearization of the stochastic equations requires an assumption of smallness 
of the random perturbations of the average motion, and this, in fact, is not always true. 
Finally, when the dynamic equations are formulated, an ambiguity arises connected with 
the notation used to write the terms describing the pulsatory saesses. The law of conser- 

vation of the moment of momentum implies well defined relations, which should be satis- 
fied by the coefficients of the pulsating phase viscosities obtained by completely inde- 

pendent methods. 
In the theory proposed we use a method which is basically similar to that used to de- 

scribe the turbulence of a single phase medium [4] ; the shortcomings listed above are 
eliminated. 

1, Dynamic and #t ochr,tic @quation8. Below we consider a system of 
particles suspended in a gas, neglecting for simplicity the impulse in the gas and the vis- 
cous dissipation of energy taking place in it. Using the concept of a continuous medium 

as an approximation we can find, as in 133, the velocities of the gaseous and dispersed 
phase by averaging over the volumes containing N > 1 particles. If L is the linear 
dimension of such a volume, then we obtain the following relations for the velocities of 
the phases, the gas pressure and the volume concentration of the disperse system ( 1.1 J 

VL = vf VL', wL=w+wL', pL = danL = dz (n ‘t a’), PI. = P -I- PI,’ 

respectively, where the first terms ln the right-hand sides are obtained by the averaging 
over the whole ensemble (i.e. formally as iv and L -+ 00 so that VL --t v), and the 
second terms represent the random pulsations of the corresponding magnitudes. Here and 

below x denotes the pressure divided by the density d2 of the material forming the par- 

ticles. 
When subjected to such an averaging process, the pulsations of dimensions smaller than 

L, partly disappear. We shall describe their influence on the averaged motion and large 
amplitude pulsations using, similarly to [4], the pulsation pressure tensor and the pseudo- 
turbulent viscosity. These quantities are analogous to the ordinary pressure and viscosity 

which depend on the molecular motions (*). Remembering the necessity of satisfying 
the law of conservation of the angular momentum, we shall symmetrize the pseudoturbu- 

lent viscous stress tensor [4] at once, obtaining the following formal expressions for the 
tensor PI, of the pulsatory (pseudoturbulent) (“) pressure of the dispersed phase and.for 

the pseudoturbulent stress tensor %L in this phase: 

*) We note that the pulsatory pressure did not appear in 141, where only homogenous 
turbulence was considered for the reason that the derivatives of the average characteris- 
tics of the homogeneous turbulent field with respect to the coordinates are equal to zero. 
This implies that this pressure had no influence on the motion. 
**) Here we use the terminology of 131. Pseudoturbulent motions, unlike the usual turbu- 
lence, are mainly supported by the action of the gravity and of the viscous phase inter- 
actions, on the concentration fluctuations of the system (also see below). 
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Here VL and yL denote the tensors of the dynamic and pseudoturbulent viscosity of 
the dispersed phase, while n, is the tensor of the RMS pulsatory velocities of this phase, 
and they all depend on the small (compared with the average dimension L)+ random 
motions. Below we shall give a more detailed definition of those tensors, now it will 
suffice to say that all the tensors appearing in (1.2) are assumed to be, within some 

approximation, dependent on the conditions of the average motion and on the physical 
phase parameters only. This essentially corresponds to the analogous assumptions used 

in the kinetic theory of gas. Relations of the type (1.2) can also be set up for the disper- 

sing phase, but, when we neglect the impulse and molecular viscosity of the gas, we can 
also neglect all the ~udot~b~ent motions of the gas and their influence on the aver- 
aged motion of the two-phase system. 

Equations of the conservation Qf mass of the phases have the usual form 

+r, a to -Pr,)vr_I () a (PL w3 
at- ar =( 

z+ ar *=o (1.3) 

Equations of the conservation of impulse of the phases with (1.2) taken into account, 
can be written as 

o= 

where dr and pO = dr~s denote the density and viscosity of the gas, g is the free-fall 
acceleration vector, K = K(p) is the function expressing the influence of the imposed 
constraints on the Stokes mode of flow past the particles of radius a. Expression 

fL = - PL dsvrt + P ~*pL i;;. (VL - W,.) 

describes the force of interaction between the phases, referred to the unit volume of the 
mixture and valid for small drand a (1.4). 

Inserting (1.1) into (1.3) and averaging over the whole ensemble, we obtain 

Similarly, limiting ourselves to the second order terms in the pseudoturbulent pulsations 
and utilizing the relation 

PL(wL&)WL =?: &(PLWL * WL) -+- WLfg 

obtained from the second Eq. of (1.3). the asterisk denoting the dyadic product, we obtain 
from (1.4) the folIowing equations for the averaged motion: 

o----(1-p) $--_pK(v- w) + C@> + <@> 
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where w in cr”r, replaces wL in aL in (1.4). The last terms in (1.5) and (1.6) describe 
the influence of large scale pulsations on the averaged motion. In the case of a random 
motion of an incompressible, single phase medium, they reduce to the Reynolds stresses 
governed by the large scale pulsations of this medium [4]. 

For the ~eudot~bulent fluctuations, (1.3) and (1.5) together with (1.4) and (1.6) 
yield the following stochastic equations : 

Fp = - sp + (Sf’) 
s 

I;‘.-$ -_ - St”’ -+ (sp)) 
where a~’ differs from or, , replacing WL by wL’. 

In accordance with the model given in [33 we assume that the amplitues of the pseudo- 

turbulence are much smaller than the dimensions of the averaged motion. Passing in 
(1.5) and (1.6) to the limit as L --f oo and taking into account that RL and sr_ tend, 
at the same time, to zero, we obtain the dynamic equations of motion in the following 
form : 

(64 v.++-wJ)+4 (-$ +wg)Pi- p$+= 0 

+-p)~-p@(v-w)=0, p (--g+&)w=. 

Here the tensors n and o’denote the limit values of IJL and 01,~ as 1; -+ 00 and they 

describe the influence of all pseudoturbulent motions on the averaged motion of the dis- 
perse system. Comparing (1.8) with (1.5) and (1.6), we obtain 

($‘) - (#) =: (Rt”> ==. 0 - I d?) #O 
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Relations (1.8) also yield the equation of the conservation of impulse of the dispersoid. 

(1.9) 

The assumption discussed in [3] that the significant variations in the values of parame- 

ters of the averaged motion are much larger than the amplitudes of the pseudoturbulence, 

enables us to simplify the stochastic equations (1.7). Representing all random magnitudes 
as stochastic Fourier-Stieltjes integrals with random measures we obtain, in the local 

coordinate system where w = 0, v = u the following Eqs. : 

(co + uii) d.& - (I- p)k dZ, = dZ!f, o d& + pk dZ, = d.@ 

-i(l -p)kdZ,- 
( 
Q yu -T- ~) dz, - fipk’ (dZ, - d&j,) = dZt’ 

(1.10) 

- p( io $ v (k) kk) dZ, - ipk dZ, + -~-~+g+~d~u)dZ,+ 

t- Ppli (dZ, - dZ,) - p (v (k) k) (k dZ,,) = - dZf’ + dZ$” 

where o is the frequency, k is the wave vector and dZQ denote the differentials of the 
random measures of the processes Q multiplied by (- i). 

Introduction of the Fourier-Stieltjes integrals enables us to sharpen definitions oft the 
pulsations of the type cp’&, as well as of ITL and VL. We have 

WI*’ = 
s 5 

&m’+ liorf &&, Il I, = 
s s 

130 (d%,,* * dZw) 
w ti’<lr 0 jL’>k 

Moreover, when deriving Eqs, (I. lo), we assumed the following expression for the pseu.- 

doturbulent transfer of impulse between the fluctuations whose wave numbers are k“< k 
and the vortices whose wave numbers are k’ > k 

(y,&$+vL’z -s ,~~~v(~~“)k”kDei~Y’+k’r~dZyl 

Do 

v(Ic) = a Re (elm+ (dZ,* * dZ,)} dt 

In the above expressions k Y L-f and CC is taken as a semi-empirical constant of the 
order of unity. The last expressions correspond to the model, according to which the vor- 
tices with k’ > k” influence the random motion with the wave number &‘(of course 
!c” < k) through the mechanism of the pseudoturbulent viscosity, while the vortices 
with k’ <k” - through random forces and the divergence of flows in the right hand 
sides (1.10). The conceptual similarity to the Heisenberg’s hypothesis 153 is obvious 
(more detailed discussion will appear at the end of Section 2). 

Homogeneous equations (I. 7) or (1.10) describe an ordered degeneration of some ini- 
tial fluctuation field VC’ (to), WL’ (to), nt’ (to) and pi’ (to) caused by the pressure 
forces, viscosity, e . a . Divergencies of random flows Q and forces F describe the accu- 
mulation of new fluctuations. We can separate these processes by introducing, as in [6]. 
two methods of averaging, the complete one used above, and the averaging when the ini- 
tial state is fixed. We can easily see that the time scale of the first process is compara- 

ble with the time of decay of the correlation functions of the pseudot~bulent field and, 
that it considerably exceeds the time required to produce a significant variation in the 
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random terms appearing in the right-hand sides of (1.7) (see also [4]). Therefore, when 
investigating the dynamics of the fluctuation degeneracy we can consider, in the first 
approximation,, Q and F in (1.7) as being localized in time and assume the spectral 
densities of their correlation functions to be independent of the frequency 0 (assumptions 
used in [S] that the random forces are spatially localized, is not employed here). 

Following the terminology of [S] we can call the time scales discussed above, the ex- 

ternal and internal temporal pseudoturbulence scales ; they have the same sense as the 
external and internal spatial scales of the turbulence in a single phase fluid. 

2. Spectral equations. Complete definition of the random processes intro- 
duced in Section 1 and of the dynamic equations&8),demands the knowledge of the sta- 
tistical characteristics of the random processes which appear in the right-hand sides of 

(1.7) or (1.10). Below we derive the spectral equations for these characteristics. 
Eliminating .dZ, and dZ, from (1.10) we obtain 

o d.2, + pk dZ, = d.@‘, - p (io + Y (k) kk) dZ, + 
d%$) did’) k 

+ (B;o -c_ C) dZ, = dZ$” $- &, (i- + -s> F + v(k) k dZ$” 
- I’ 

PK k 
B=v(k)k+--/+ c__?+g+(yL (2.1) 

The quantities dZ, and dZ, satisfy 

LW’ (dz, - dZ,j - (B’o + C’) dZ, = - dZg’ - 

(2.2) 

At this point we shall introduce further random processes 

pdZ, = dZ$“: pdZ,=dZ$@+& 

+ v (k) k dZ$‘, pd’& = dZci’ + 
F 

( 

dZ? dZ$) k 

-+y- F 1 --P > 
From Eqs. (2.1) we obtain 

dZ, = p (ioz + 2h + c)-’ [k dZz + (io + v (k) kk) dZl] 

dZ, - p-’ (io + v (k) kk)? [(Bw + C) dZ, - p dZz] (2.3) 

Let us now put 
2b = v(k) kk + Bk, c = cli 

(dZz* * dZz) = ‘P (k) do dk, ‘p = (t + ix, *ii = *ji (2.4) 

Xij = - Xjic (d&* dZg) = a (k) dw dli, a=p+iy 

(dZ,* dZ, > = 6 Jkl do dk 
Here $ij, Xii, ai, pi and y are some unknown functions of]<,and are independent 



of w. We shall now compute the spectral densities 

Cd&,* dZ1) = 0 I[d + (2bo + c)“]-’ (‘-I?,,, t + r’X,, 1j do, dk, 

‘u;, 1 = (3x4 -I- c) ka + dky + [V (fc) kk (2h _i- c) -/- CO”] 8 

&.; = w2Q - (2h -t_ c) ky -i_ [u (Ic) kkd - co (2h -I- c)] 6, 

cd&,* d&} = p fo4 + (2bw -j- c)~]--’ (VP, z -+- iX,,J d6) dk, 

‘Ir p.2 = Wo -Wk+- w2kX + [u.(h) kk (2bo + c) -b d] ; - 

- [v (k) kkd - rr, (2bo + c)] y, X,, 2 = dk+ + (2bw + c> k;5 -I_ 

+ [u (k) kkd - w (2bm + c)] p -+ [v (k) kk (2bo -+ c) + <tPj ‘I (2,s) 

Using the relations (8.5) and (2.3) together with the properties of the functions appear- 
ing in (2.41, we obtain the following expressions for the spectral densities of the observed 

random F’rocesses (rl;T,* r&j = p2 [(s,” -t_ {&a + @]-” I,,. P (f(1) rjk 

,C,;, =3. k$k -I- % f(v (A.) irk) p -I- w/l + [d + (u (!c) ~tk)?j h 

w?p* d&J = pw-~ (I+$, w +- i&l,. *,> <h elk (5) 

L p, w = (V (Ii) Irk) [(Th + C) I;,., -- W,,,] - CO&, 2 

wL7=- - 0 t(B(t, + C) &, zI - Wp, z] I (u (Ic) kk) X,, a 

Cd&,* * d&J = Wx (I+,,.,,, + iM,J &I dk 

f Jw,w = I(OP + (2b@ + cj2] $ - I(Jh + C) ‘W,,, -t W&S& + (Bw + C)] -+- 

-I- (Rw i- C) * pw 4- q JJp.p, M.,,,, = fd -I- (2h + c)‘] x --j- 

-I- I&% * (Em -I- q - (no -I- C) * &,3] 

ir, = [a4 + (2bw + cj2] [o? + (V (A.) kk)2] 

Introducing now, analogously to (2.41, new unknown functions defining the average 
values of the products of dZ, with other cJZi, we can easily write expressions for the 
spectral densities of the correleations in which the random process VL’participates, 

We should note, that above we have only considered a particular “natural” solution of 

the Eqs, (1.10) dependent on the presence of random magnitudes dZq and dZ, in the right- 
hand sides of these equations, and this corresponds to an investigation of the steady ran- 
dom motions in a two-phasd system. In principle, we can use this method to describe 

both, the motions dependent on the usual turbulence in a mixture. and the specific pseudo- 
turbulent pulsations caused, in accordance with the physical model given in [I - 31, by 
the force of gravity and the viscous interaction between the phases, both of them acting 
on the concentration fluctuations of a disperse system. 

since the transfer of impulse in the gaseous phase in neglected within the apprexima- 
tion considered, the turbulence of the supporting flow cannat influence the pulsations of 
the dispersed phase lo any appreciable degree, and this leaves only the pseudot~rbu~ent 
components of the latter (this corresponds to F>y’ = 0 in (1.7) 1. 

the above may, of course, be no longer true when Q are sufficiently small, since, if 
the Reynolds number of the averaged motion becomes sufficiently large, then the turbu- 
lent stresses in the gas will become comparable with the fluctuations of the forces be- 

tween the phases and it will no longer be possible to neglect them. 
on the other hand, when p is large, then the effect of the turbulence of the supportitrg 



st8tistlc81 m8chmlcs of gaseous suspensiuu 869 

flow on the random pulsations of the particles can be neglected, and this corresponds to 
the well known effect of “freezing out” the turbulence in the concentrated disperse sys- 
tem [7]. Another reason for treating the pseudoturbulence separately is, that, in many 
processes of considerable practical importance the Reynolds number of the average mo- 
tion is not large and the usual type turbulence does not occur (pseudoliquefaction, pneu- 
matic transport of granular materials under large loads e. a.). 

From (2.6) we obtain the following relations for the pseudotnrbulent pressure and vis- 
cosity of the dispersed phase: 

If (Ie) 7 
5s C&L’>& 

CD 

y (/C) = a (b, w co9 wS - M,,, w sin uz) (2.5) 

Thus the kinematic tensors introduced in Section 1 and describing the influence of the 

small scale pseudoturbulence on the large scale turbulence and on the averaged motion, 
can be written as fnnctionals of the required functions of the wave vector. 

To obtain these functions, we shall employ the equations for the simultaneous two- 
point correlations, which can be obtained in the usual manner from the equations of 
motion. However, we can easily see that the equations for various correlations of the 
processes \vt’ and pt’ are sufficient in the present case, i.e. it is advisable to use Eqs. 
(2.1) themselves as a starting point in constructing the corresponding stochastic equations. 
Averaging over the periods of time which are large compared with the internal, and small 
compared with the internal time scale of the ~eudoturbulence, leads to the disappearance 
of random quantities from the right-hand sides of the equations, and (2.1) then yields the 
stochastic equations of the form 

The computations for the simultaneous two-point correlations, yield subsequently 

+ + -& (Q&w Q&$,) = 0, t= rB--m 

fG&)[%- (+# Q%+P[- (~L-$)($g)f 
p/c a aQcL) 

+(i-_ 1 ‘-“+(~-9)(~~)Q~~_(a~)~- 
a a a& 

-pqzqJ*, P(&&)[+ +L&&)jQif,?)+ (2.9) 

+Ps{[-((vL~)(~~)+~~l’~}+s{~(~- 

-g)(-&--&) - (&&)$+ Q;tL}; 

Qt!,(k PI = (a:(tc 

.q,_ aztm 

rA) TL’ (tt rB)h (8 (a))i; =f afj f ait 

where ~4 and B denote two points in space. Eqs. (‘2.9) represent the generalization of 
the Well known correlation equations describing the turbulence of a single phase fluid. 
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Corresponding energy spectrum equations (i.e. Fourier transforms of (2.9)) have the form 

‘f aE 

Y + + ik(E,,w -EE,,,)}k2dk = 0 

f{p [$ + (v (IL; kk)] E,, w + pl? (kE,, ,J - C,R,, p - pzkE,, w) kadk = 0 
0 k 

cIp [ -& + 2 (v (k) kk)] E,, w -j- I> (R * k&o, w + Ew, wk * W - 

b 

Here functions E represent the spectral densities of simultaneous two-point correlations, 
and are equal to the spectral densities of the corresponding nonsimultaneous two-point 

correlations integrated along the frequency axis. 
The assumption that the mean flow is much larger than the pseudoturbulent flow im- 

plies, that we only need to consider the steady state problem. Using Expressions (2.6) we 

obtain the spectral equations in the form 

03k cok 

k . IS nl,,,~=O, ss-i v(k)kk 
L &Id-%.U) 

Q + 

--COO -CCQ 

_ k rAw* w iiMw* w ) do k2& _ 0, 

mk 

s s-c 2(v(k)kk) Lw’u;Mw’w + 
-so 

+~*k LW.W;"W,W +k LW.W;inrWd *B_ 

-c* 1% w , +ihr,,10 LP,W-iMW’ *C 

CD - 
= 

@ 
0 (2.il) 

where Y (Ic) is the tensor functional (2.7) of the required functions. When the integration 
with respect to /c is performed in (2.10) and (2. ll), the argument k of this tensor is taken 

as a parameter. 
First Eq. of (2.11) is scalar and real, the second one is equivalent to six, while the third 

is equivalent to nine real scalar equations. Thus we have sixteen nonlinear integro-dif- 

ferential equations for defining sixteen unknowns in (8.4). These, obviously, should 
become zero as k + 0 and k + 00. In addition, we have a normalizing condition 
according to which the expression for the mean square fluctuation of the concentration 
of the system over large volumes should coincide with that, obtained from the statistical 
analysis (see ~21 and ~81). It can be shown that the points k = 0 and k = oo represent 
the branch points of the solutions of (2.U). therefore the normalizing condition does not 
violate the definiteness of the system. 

Expression (3.11) shows clearly the analogy with the Heisenberg [5] hypothesis concem- 
ing the spectral energy transfer. Indeed.(J. 11) corresponds to a model, according to 
which the influence of the vortices with wave number greater than k on the perturbations 
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with the wave number equal to k resulting in the net loss of energy by the latter is such, 
as would be caused by some pseudoturbulent viscisity resulting from the presence of these 

vortices. 

When dealing, for example, with problems of diffusion of some extra component in the 
disperse system, we might become concerned with pseudoturbulent gas pulsations. In this 
case it will be necessary to introduce new unknown functions of k defining the mean 
values <dZ~**dZ,), <dZs%dZ,> and <dZ3*dZI>. There are twenty four such functions and 

the first Eq. of (2.2) defining the relative velocity of gas yields easily, using the method 
given above, the same number of new integro-differential spectral equations defining 
these functions. 

Thus we see that the most important simplification connected with neglecting the 
transfer of impulse in the gaseous phase consists of the fact, that it makes it possible to 

isolate a closed system of spectral equations for the quantities characterizing only the 
dispersed phase and, consequently, to reduce considerably the number of equations. How- 
ever even in this simplest case, solution of the system of spectral equations is very diffi- 

cult and the difficulties begin already during the final stages of formulating the problem, 

i. e. during the integration with respect to o in (2.11) . Therefore, further attempts at 
constructing simpler models of pseudoturbulence in a disperse system based on simplifi- 
cation of (2. ll), may be of interest. 

We note that in very concentrated disperse systems approaching the condition of dense 

packing, the effects due to mechanical interaction between the suspended particles, 
become significant, This, however. does not present an insurmaountable difficulty - we 
can overcome it in the first approximation by replacing a in (2.7) with some function 
of p, which would become infinite as’p+p,, where p+ denotes the concentration of the 
system in the state of close packing. The form of this function follows from the analysis 

of the transport processes in dense gases [l and 33. 
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